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ABSTRACT
In the task of emotion recognition from videos, a key improve-

ment has been to focus on emotions over time rather than a single

frame. There are many architectures to address this task such as

GRUs, LSTMs, Self-Attention, Transformers, and Temporal Con-

volutional Networks (TCNs). However, these methods suffer from

high memory usage, large amounts of operations, or poor gradients.

We propose a method known as Neighborhood Attention with

Convolutions TCN (NAC-TCN) which incorporates the benefits

of attention and Temporal Convolutional Networks while ensur-

ing that causal relationships are understood which results in a

reduction in computation and memory cost. We accomplish this by

introducing a causal version of Dilated Neighborhood Attention

while incorporating it with convolutions. Our model achieves com-

parable, better, or state-of-the-art performance over TCNs, TCAN,

LSTMs, and GRUs while requiring fewer parameters on standard

emotion recognition datasets. We publish our code online for easy

reproducibility and use in other projects – Github Link.

CCS CONCEPTS
• General and reference → Experimentation; Performance; •
Human-centered computing→ Collaborative and social com-

puting devices; • Computer systems organization → Neural
networks; • Computing methodologies → Scene understand-
ing; Vision for robotics; Activity recognition and understanding;
Computer vision tasks; Computer vision; Computer vision
problems;Machine learning approaches.
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1 INTRODUCTION
The study of emotion recognition has gained significant importance

due to its widespread applications in various disciplines, including

Human-Computer Interaction. Socially assistive robots, medical

diagnosis of disorders such as PTSD [50], and software usability

testing [23] in particular rely heavily on accurate emotion recog-

nition. For instance, a better understanding of human emotions

enables socially assistive robots to comprehend and respond appro-

priately to various scenarios, leading to effective assistance [2]. As

a result, the development of advanced emotion recognition tech-

niques holds immense potential in revolutionizing various aspects

of our lives.

A common issue with the task of emotion recognition and un-

derstanding is lack of data. This is commonly due to the fact that

Figure 1: TheNAC-TCN combines Dilated Temporal Convolu-
tions with Dilated Neighborhood Attention to better capture
temporal relationships in video inputs through contextual
weighting using Dilated Neighborhood Attention. Our pro-
posed architecture achieves better performance with smaller
model size.

annotation is a non-trivial task. This means that architectures must

be expressive enough without large data sizes. The classification

of emotions from video inputs is a task that has been extensively

studied in the field of computer vision. A common approach to this

problem involves performing classification directly on individual

frames using convolutional networks[49]. However, this approach

ignores the temporal aspect of emotion, which is critical to its

accurate recognition. Humans exhibit emotions over a period of

time, and considering this temporal aspect can lead to significant

improvements in performance through contextual understanding

[46].

To incorporate temporal information into emotion recognition

from video inputs, various techniques have been proposed, includ-

ing Recurrent Neural Networks (RNNs) [48] and Transformers

[8, 16, 61]. While GRUs and LSTMs are effective in modeling tem-

poral dependencies, they suffer from slow training times, unstable

training, and high computational costs. This is because their gradi-

ents flow through time rather than in parallel[22]. Transformers,

on the other hand, typically suffer have a large parameter size and

require more operations due to their self-attention mechanism at-

tending to a large receptive field. Commonly the two models are

combined for optimal performance[58].

An alternative solution that has gained popularity is the Tempo-

ral Convolutional Network (TCN) [5, 44, 59]. The TCN allows for the

modeling of temporal dependencies in video tasks and time-series
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tasks similar to RNNs and LSTMs, but with more stable gradients

and higher efficiency at large receptive fields due to parallelized

computation of gradients [5, 34]. The receptive field of the TCN can

be easily adjusted with the number of layers, kernel size, and dila-

tion factor. The TCN is a promising method for video tasks due to

its efficiency benefits while understanding temporal dependencies

[3] for emotional understanding.

Temporal Convolutional Networks do pose performance issues

in regard to it’s understanding complex relationships in the short

and long term of a sequence and more irregular sequences [40].

Models attempt to address this, but fall short in terms of model size

and performance due to the large size of self attention or auxiliary

models [6, 40, 61]. TCAN attempts to intertwine attention layers

[17] which leads to larger models.

In this paper we introduce a new Temporal Convolutional Net-

work known as NAC-TCNwhich addresses concerns about complex

temporal relationships while maintaining or improving the benefits

of TCNs – stable gradients and computational efficiency.

1.1 Related Works
1.1.1 Recurrent Networks. Long-Short TermMemoryUnits (LSTMs)

are a response to the hard to train nature of RNNs [45]. RNNs store

a hidden state that can be used in order to represent all prior knowl-

edge. Though this may be a strong representation, there are often

training issues in long sequences. LSTMs include a forget gate that

can allow for data to not be stored in the cells memory unit state.

The LSTM has an input, output, and forget gate. LSTMmodels suffer

from a large amount of operations per cell. Gated Recurrent Units

[9] attempt to solve this by not holding a memory unit, instead only

having update and forget gates. Despite the less complex structure,

it has similar performance to LSTMs [11].

1.1.2 Attention and Transformer. Self Attention [9, 54] was intro-

duced for language tasks. Instead of simply holding a weight and

bias, self attention focuses on parts of the input and weights sequen-

tial inputs based on a query, key, and value matrix. These attention

models can be used in conjunction with recurrent models for better

performance (Sec. 1.1.1).

Transformers use layered attention with encoders and decoders

[12, 54]. This has been commonly used in NLP tasks, but recent

advances have moved towards it’s application in computer vision

[4].

These 2 methods represent a divergence in machine learning –

use of classical recurrent methods or a move to the more computa-

tionally heavy transformer. In this paper, we hope to show a third

path that can incorporate the benefits of both while alleviating their

pitfalls.

2 BACKGROUND
2.1 Temporal Convolutional Networks
The Temporal Convolutional Network [5, 44, 59] is a convolutional

representation of temporal data. It contains 2 commonly used parts,

the main casual convolution network (Sec. 2.1.2) and dilated convo-

lution (Sec. 2.1.1) in order to create a Dilated Temporal Convolu-

tional Network.

2.1.1 Dilated Convolution. The dilation (à trous Convolution) [59]

allows for amodel to have a larger receptive field without increasing

parameters. Dilated convolution is achieved by introducing "holes"

between the points addressed by the kernel, resulting in a larger

receptive field. The term “gaps” will be used to refer to any method

of expanding a kernel through gaps to widen the receptive field.

2.1.2 Dilated Temporal Convolutional Network. Introduced inWaveNet

[44], a Dilated Temporal Convolutional Network is a temporal

network model that computes timesteps in parallel rather than

sequentially. This fundamentally alters how the model addresses

backpropagation through time by performing backpropogation for

all time steps at once rather than following a temporal gradient

flow. A casual convolution is used in order to prevent leakage from

the past into future steps.

Figure 2: TCN architecture

A TCN layer can be described as follows for an input sequence

𝑥 , dilation 𝑑 , length 𝑖 , dilated convolution ∗𝑑 , and filter 𝑓

𝐹 (𝑥𝑡 ) = (𝑥 ∗𝑑 𝑓 ) (𝑡) =
𝑖−1∑︁
𝑛=0

𝑓 (𝑡) · 𝑥𝑠−𝑑∗𝑖 . (1)

A dilated convolution is used in order to allow a network to un-

derstand time steps from previous steps efficiently and exponen-

tially increase the receptive field [59]. Without dilated convolutions,

TCNs would have a linear receptive field to prior steps. With di-

lations, the receptive field to previous timesteps (frames) can be

calculated as

𝑅𝐹 (𝑛,𝑑, 𝑘) = 1 +
𝑛−1∑︁
𝑖=0

𝑑𝑖 (𝑘 − 1), (2)

where 𝑑 is the dilation factor, 𝑘 is the kernel size, and 𝑛 is the

number of hidden layers. Commonly, a dilation factor of 2 is used

in order to achieve an exponential receptive field [5].

Dilated Temporal Convolutional Networks (TCNs) allow for

a large amount of temporal data to be processed with low com-

putation through a large receptive field. TCNs allow for parallel

computation, a large receptive field, and helps avoid vanishing or

exploding gradients due to its backpropagation not being parallel

to the temporal sequence, but rather perpendicular. Dilated TCNs

have achieved impressive results replicating the long-term memory

understanding of other architectures like LSTMs and RNNs such

as the copying memory task [5]. The TCN has also been adopted

for action segmentation achieving state-of-the-art results on action



NAC-TCN: Temporal Convolutional Networks with Causal Dilated Neighborhood Attention

detection [35]. TCNs have also been explored in emotion analy-

sis, achieving results above those of LSTMs and RNNs on emotion

based tasks [61]. TCNs commonly consist of temporal blocks, which

are made up of two convolutional layers that are stacked on top of

each other. The purpose of stacking these layers is to ensure that

the input data is first scaled to the expected size and then passed

through a convolutional layer of the output size.

2.2 Neighborhood Attention
Neighborhood Attention (NA) is an attention method that utilizes

a sliding window technique similar to a convolution which views

the time series at incriments like a convolution instead of all at

once such as self-attention. This is similar to methods such as the

SWIN transformer [20, 38] but the main difference comes from

how NA allows for overlapping sgements, a method showed to

improve performance by ensuring translation equivariance over

similar methods [19, 20]. NA was introduced in order to address

poor efficiency of self-attention and sliding window techniques by

using a tiled algorithm and efficient CUDA kernels published in the

N𝐴𝑇𝑇𝐸𝑁 library [1].

Dilated Neighborhood Attention (DiNA). is a method introduced

to further address the performance of attention [19]. This dilated

transformer works similar to dilated (also known as à trous) con-

volutions [59]. This improves performance beyond Neighborhood

attention by attending to a higher receptive field in less operations

than a normal transformer. When 𝑑 is a dilation value and 𝑘 is

a neighborhood (kernel) size, DiNA reduces time complexity of

self-attention from 𝑂 (𝑛2𝑑) to 𝑂 (𝑛𝑑𝑘).

2.2.1 TCAN. TCAN [17] is a TCN-based model that intertwines

attention to maintain receptive field while providing an attention

mechanism. This model has seen improvements over the TCN on

language datasets. Although the method has seen improvements

over the TCN, it leads to a significant parameter increase and it

doesn’t preserve the casual nature of the TCN, meaning that infor-

mation flows freely between layers, and loses the temporal property

due to leakage.

3 METHODS
To enhance the representation of temporal dependencies and their

importance in emotional understanding, we propose a method that

extends TCNs by incorporating the attention features of Neigh-

borhood Attention while maintaining causality. We introduce our

proposed archetecture that achieves this along with memory and

runtime benefits in this section.

3.1 NAC-TCN Formulation
The Neighborhood Attention with feature extracting Convolutions
TCN (NAC-TCN), is a deep learning based approach that utilizes

Dilated Neighborhood Attention to enforce causality and com-

bines convolutional operations and self-attention. Our proposed

NAC-TCN method incorporates neighborhood self-attention layers

within Temporal Blocks with 1D Convolutional Layers to allow the

TCN to identify the most important frames through Neighborhood

Attention and create local filters through 1D Convolutions. A com-

bination of convolution and attention layers has been shown to

produce improved results [57]. Our method makes use of Dilated

Neighborhood Attention [19, 20, 56], and shifting inputs to main-

tain causality. 1x1 convolutions [37] are added on the input of each

temporal block in order to ensure that residual connections have

the same tensor shape in a similar fashion to the original TCN. The

use of Dilated Neighborhood Attention not only keeps causality in

the TCN, but also reduces operations and parameters.

3.2 Temporal Block
A NAC-TCN temporal block is parametrized by its kernel size 𝑘 ,

dilation value 𝑑 , input 𝑥 , time step 𝑡 , convolution 𝑓𝑘 and the DiNA

operation (Eq. (6)) and can be described as

𝐹 (𝑥𝑡 ) = (𝑥 ∗𝑑 𝑓𝑘 ∗𝑑 DiNA
𝑑
𝑘
) (𝑡) . (3)

In between each convolution, an activation (ReLU) is applied and

followed by a 1D Spatial Dropout Layer which allows for feature

independence between channels of the model [52]. This reflects

the primary diagram in Sec. 3 which shows the Temporal Block

structure where a Convolution is followed by Dropout and ReLU

with a 1x1 convolution as described in Sec. 3.4.

3.2.1 Motivation for Convolution andNeighborhood Attention Stack-
ing. Wewish to create high performing low operational cost models.

Adding convolutions achieves this twofold: being able to reduce

dimensionality through downsampling (a feature that doesn’t exist

in NAT) and using a convolution over an attention block with fewer

parameters.

Additionally, our motivation for stacking convolutions and Di-

NAT comes from the benefits of convolutions that have been under-

stated by recent works. Prior work has noted that though attention

basedmethods outperform, theymainly do on a very large scale [14].

Primarily, lack of convolutions loses the benefit of quick and easy

translational equivariance and requiring larger datasets/training

time to perform as expected or a use of regularization [53]. This

becomes important in domains such as emotion recognition, as

datasets are tedious to collect as they require expert annotators and

a mix of annotators requires agreement in labeling, which can be

sometimes subjective
1
.

3.3 Causal Dilated Neighborhood Attention
We extend the dilated neighborhood attention structure introduced

by Hassani and Shi [19] (Sec. 2.2). Their Dilated Neighborhood

Attention is modeled by attention weights A(𝑘,𝛿 )
𝑖

for a dilated by 𝛿

DiNA layer

A(𝑘,𝛿 )
𝑖

=



𝑄𝑖𝐾
𝑇

𝜌𝛿
1
(𝑖 )

+ 𝐵 (𝑖,𝜌𝛿
1
(𝑖 ) )

𝑄𝑖𝐾
𝑇

𝜌𝛿
2
(𝑖 )

+ 𝐵 (𝑖,𝜌𝛿
2
(𝑖 ) )

.

.

.

𝑄𝑖𝐾
𝑇

𝜌𝛿
𝑘
(𝑖 )

+ 𝐵 (𝑖,𝜌𝛿
𝑘
(𝑖 ) )


, (4)

1
Kollias [29] notes that many frames get thrown away due to annotator disagreement,

making emotion datasets sparse and small. Additionally, the process itself is much

more tedious than common classification datasets.



Mehta and Yang

(a) 𝛼 represents the Attention. Convolutions and Attention for timesteps other than 𝑡𝑓 are
omitted for simplicity.

(b) NAC-TCN Temporal Block

where 𝜌𝛿
𝑗
(𝑖) is 𝑖’s 𝑗-th nearest neighbor, 𝐵 (𝑖,𝜌𝛿

𝑘
(𝑖 ) ) is bias corre-

sponding to two tokens 𝑖 and 𝑗 , 𝑄 and 𝐾 are query and key projec-

tions of 𝑋 . The neighboring values of each neighborhood of size 𝑘

dilated by a value 𝛿 is

V(𝑘,𝛿 )
𝑖

=

[
𝑉𝑇

𝜌𝛿
1
(𝑖 )

𝑉𝑇

𝜌𝛿
2
(𝑖 )

. . . 𝑉𝑇

𝜌𝛿
𝑘
(𝑖 )

]𝑇
. (5)

For each sliding window, we can define the output of each pixel

by

DiNA
𝛿
𝑘
(𝑖) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
A(𝑘,𝛿 )
𝑖√︁
𝑑𝑘

)
V(𝑘,𝛿 )
𝑖

, (6)

where 𝐷𝑖𝑁𝐴 is applied to each element 𝑖 , where 𝑖 ∈ R1×𝑛
, and the

output is then 𝐷𝑖𝑁𝐴(𝑖). 𝑉 , 𝑄 , and 𝐾 are all calculated in the same

manner as self-attention, as 𝐷𝑖𝑁𝐴(𝑖) tends to simply self-attention

as you increase 𝑘 and decrease 𝑑 to 1.

In order to stop temporal leakage, we must ensure that for an in-

put (𝑥𝑡 |𝑥0, ..., 𝑥𝑡−1) to each temporal block, the output (𝑦𝑡 |𝑦0, ..., 𝑦𝑡−1)
must be influenced by a time step at least 1 less than 𝑡 . To ensure

this, we change 𝜌𝛿
𝑗
(𝑖) to represent the nearest neighbor to the left

of the 𝑖-th value with a dilation 𝛿 . This would mean that for a neigh-

borhood 𝑘 , the farthest value referenced is 𝛿 · (𝑘 − 1) to the left of

the input sequence (not including the 𝑥𝑡 itself), rather than
𝛿 · (𝑘−1)

2
.

In order to ensure this, we pad DiNA
𝛿
𝑘
(𝑖) and the convolutions

using casual padding in order to make sure that timesteps are not

influenced by the future, then removing padding before the next

temporal block to ensure length consistency. In implementation,

this is a standard 𝛿 · (𝑘 − 1) zero padding followed by removing

𝛿 · (𝑘 − 1) elements to the right, removing future timesteps.

3.4 Residual Connections
Since a network requiring a large receptive field will require an

increase in layers, a residual connection [21] is added to address

vanishing and shattering gradients problems [7, 55, 60], improve

the loss landscape [36] leading to more stable training and better

results. Residual layers are simply described as

𝐻 (𝑥) = 𝐹 (𝑥) + 𝑥 . (7)

Since Temporal Blocks commonly upscale or downscale inputs, the

residual layer in the NAC-TCN Temporal Block is

𝐻 (𝑥) = 𝐹 (𝑥) +𝐺 (𝑥) . (8)

where 𝐺 (𝑥) is an optional 1x1 convolution used when scaling of

channels is required. The 1x1 convolution impact is twofold: reduc-

ing dimensions of the network in later layers and providing a way

for the model to translate features from one layer to another while

maintaining the same overall information as previous layers. DiNA

is not used for this 1x1 convolution because of its inability perform

dimension scaling.

NAC-TCN reduces parameters compared to the multi-model ap-

proach proposed by others [18, 62, 64], the original TCN, and TCAN

[17]. This can be attributed to the fact that attention operations,

which solely consider the kernel size of the neighborhood, are in-

tertwined with the convolution operations, leading to a decrease in

parameters when compared to traditional combined structures.

4 EXPERIMENTS
In order to evaluate the effectiveness of our TCN methods, we

used a variety of emotion and action recognition datasets, where

newer temporal information is more relevant than the past. The

𝑟𝑒𝑔𝑛𝑒𝑡_𝑦_400𝑚𝑓 image encoder[47] is used as an encoder for all

the datasets to ensure that the NAC-TCN is the main factor tested.

The AffWild2 dataset. [23–28, 30–32] supplies 1,500,000+ anno-

tated video frames of the valence and arousal metric in 341 videos.

A video length of 256 frames is used. Due to the fact that valence

and arousal are between [−1, 1], tanh is applied to the model output.

The valence and arousal scores are evaluated and trained on the

Concordance Correlation Coefficient (CCC) metric

𝐶𝐶𝐶 =
2𝑠𝑥𝑦

𝑠2

𝑥 + 𝑠2

𝑦 + (𝑥 − 𝑦)2

, (9)

where 𝑥 and 𝑦 are predictions and ground truths, 2𝑠𝑥 and 2𝑠𝑦 are

variances, and 𝑥 and 𝑦 are the mean values.

The EmoReact dataset. [43] provides videos of children annotated
for 8 different emotions. Sequence length of 128 is used. The classes

are not mutually exclusive and imbalanced. A random sampler and



NAC-TCN: Temporal Convolutional Networks with Causal Dilated Neighborhood Attention

binary cross entropy are used to address these issues. The sameCNN

encoder model from the AffWild2 experiments is used. Evaluation

is done using Area under the precision-recall curve (AUC-ROC) to

follow similar methodology to prior studies. AUC-ROC tells us for

different threshold how a model performs by ploting False Positive

(FP) rate and True Positive (TP) rate and defining AUC-ROC as the

area under this curve.

AFEW-VA. [13, 33] provides valence and arousal annotations to

popular films. These annotations are integers ranging from [-10,10].

These are converted to mood labels to compare to prior works [41].

Accuracy is used as the evaluation metric. The sequence length is

32, as videos are much shorter compared to other datasets.

4.1 Model Testing Methodology
The baseline GRU and LSTM hyperparameters for the Affwild2

dataset are chosen to match the prior models tested on the dataset.

Other models such as TCN [5] and TCAN [17] used the same hy-

perparameters as the large NAC-TCN. GRU and LSTM blocks are

concatenated with attention based models in order to create an

ensemble of the two for testing.

For each evaluated dataset, NAC-TCN was tested in two sizes.

The larger size attempted to use similar hyperparameters to the

GRU models while ensuring optimal receptive field (1) through 𝑘 ,

𝑑 , and number of layers. The optimal receptive field for all models

besides AFEW-VA and Affwild2 were the length of the sequence,

as only the final item was annotated. AFEW-VA used the entire

sequence length 32 and Affwild2 used 256 based on prior literature.

The model smaller size still ensured the optimal receptive field, but

attempted to be a equal to smaller size than the GRU and LSTM

models through adjusting previously mentioned hyperparameters

along with the number of channels for the convolutional layers.

This approach allowed us to conduct comparative tests while high-

lighting the versatility of the NAC-TCN model in terms of memory

and computational cost.

4.2 Implementation Details
We use an Adam Optimizer with a base learning of 0.001 along-

side an annealing cosine scheduler. We use a batch size of 16 for

the Affwild2, EmoReact, and AFEW-VA datasets and all models

were trained for 10 epochs. AFEW and Affwild all used subject

based k-fold cross validation to ensure that information leakage

did not occur between testing and training. The validation dataset

of AffWild2 was used as the evaluation set and kept separate from

training data. The EmoReact dataset had preset train and test splits

that were used to be in line with the performance of prior mod-

els. The best performing model was selected for each method. The

same random seed value was selected to ensure reproducibility. The

number of heads for DiNAT was selected using hyperparameter

search ({2𝑛 | 1 ≤ 𝑛 ≤ 3}).

4.3 Metrics
In addition to the per-dataset metrics, both operations and parame-

ters are recorded. Operations are measured in MACs, or Multiply-

Accumulate operations
2
. Both of these were measured using the

2
Note that the FLOP operation is 2 × MAC

Pytorch FLOPS Counter [51]. MACs represent the common opera-

tion of

(𝑋𝑊 ) + 𝐵, (10)

where 𝑋 is the original input,𝑊 is a weight, and 𝐵 is a bias. We

commonly report MMac, or MegaMACs (10
6
MACs).

5 RESULTS
In this section, we report the performance of our proposed NAC-

TCN architectures against the baseline GRU, LSTM, TCN, and atten-

tion models with both performance and efficiency. In addition, we

compare against state-of-the-art models on the respective datasets

where relevant.

5.1 Affwild2

Table 1: Results on Affwild2 Validation. All models repro-
duced besides competition provided baseline. Bold denotes
indicates the highest performing model.

Method CCC ↑ M Params ↓ MMac ↓
Dataset Baseline [24] 0.17 – –

Attn. 0.20 0.97 124

TCN 0.41 13.95 3079

GRU [42] 0.42 4.66 597

LSTM 0.42 6.21 797

GRU/Attn. [42] 0.44 5.63 721

LSTM/Attn 0.44 6.79 911

TCAN 0.46 17.12 3700

Transformer [10, 54] 0.48 31.04 3970

NAC-TCN (sm) 0.48 1.24 381
NAC-TCN (lg) 0.52 10.12 3230

As reported in Tab. 1, our proposed NAC-TCN architecture out-

performs the other temporal-based models, while using a smaller

model size. Additionally, we achieve the highest performance at

smaller model sizes. The NAC-TCN, achieved through either a

simple single layer setup or with self-attention, exhibited higher

performance than the base TCN, which indicates that NAC-TCN

can better learn temporal representations with less memory.

It should be noted that superior performance has exhibited in

recent studies. However, conducting a direct comparison is challeng-

ing due to the utilization of disparate datasets and the employment

of multi-sensor methodologies during the training process. No-

tably, participants in the latest Affwild2 challenge have surpassed

reported results through four-encoder model, which incorporates

audio and image encoders [39]. Other participants have surpassed

prior state-of-the-art results with use of linguistic models from

extracted words [63]. For our purposes, we have achieved a state-

of-the-art result in the chosen set of input modalities and encoder

choice.
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Table 2: Results on the EmoReact Dataset. Bold denotes indicates the highest performing model. Two variations of our proposed
model architecture are reported, where sm indicates the smaller model size and lg is the larger model size.

Method AUC ROC ↑ MParams ↓ MMac ↓ External Training Data Audio Video

Attn. 0.56 2.5 360 ✓

SVM [43] 0.62 – – ✓

SVM [43] 0.63 – – ✓ ✓

GRU 0.74 1.62 208 ✓

LSTM 0.75 2.16 277 ✓

GRU/Attn. 0.76 4.4 567 ✓

LSTM /Attn. 0.76 4.9 636 ✓

TCN 0.79 1.8 459 ✓

TSN [15] 0.79 – – ✓ ✓

TCAN 0.84 1.94 488 ✓

NAC-TCN (sm) 0.86 1.5 453 ✓

NAC-TCN (lg) 0.78 7.8 2500 ✓

5.2 EmoReact
Results on EmoReact [43] (Tab. 2) show that with less modalities,

NAC-TCN Small outperforms other models without multiple modal-

ities or increased training data. This is done with a decrease in pa-

rameters and operations. This indicates that a better performing

architecture like NAC-TCN may be actually outperform even with

less data. NAC-TCN may be more prone to overfitting, given that

with similar parameters to GRU and LSTM, it performed similarly

and worse to a larger TCN. This highlights that NAC-TCN can be

more expressive with the same hyperparamters, hence strong of

the smaller model.

5.3 AFEW-VA

Table 3: Results on AFEW-VA dataset mood labels. Note that
1-CNN used a student teacher learning paradigm which may
increase runtime beyond what is expected.

Method Accuracy ↑ K Params ↓ MMac ↓
Attn. 0.43 ± 0.12 1860 234

1-CNN [41] 0.70 ± 0.10 – –

TS (Mood/Δ)[41] 0.73 ± 0.08 – –

TCN 0.74 ± 0.05 1220 99

GRU 0.75 ± 0.05 374 10

LSTM 0.75 ± 0.04 423 13

TCAN 0.75 ± 0.06 1253 120

LSTM/Attn 0.75 ± 0.46 1260 40

GRU/Attn 0.76 ± 0.14 1150 36

NAC-TCN (lg) 0.76 ± 0.12 988 84

NAC-TCN (sm) 0.75 ± 0.09 204 17

AFEW-VA results show that the larger NAC-TCN is able to out-

perform other methods. The smaller model results in similar perfor-

mance to TCNs but with smaller memory footprint. It is important

to note that the disparity between the models is minimal, within a ±
2% range. Consequently, the AFEW-VA dataset should be regarded

primarily as a validation of the NAC-TCN’s capacity to maintain

performance levels akin to those of more expansive models. Nev-

ertheless, NAC-TCN outperforms the 1-CNN model which uses

attention [41].

5.4 Ablation Studies
In order to understand the impact of different choices we made in

design and experimentation, we perform several ablation studies.

Table 4: Ablation study comparing residual connection on
NAC-TCN small on the Affwild2 dataset.

CCC ↑ Residual

0.41 ✗

0.48 ✓

5.4.1 Residual Connection. We conduct on ablation study on the

NAC-TCN Small model with the AffWild2 dataset, since the dataset

has the deepest model due to the larger receptive field.

The study reveals that the residual connection is critical to train-

ing. Without residual connection, the model saw a significant per-

formance decrease (Tab. 4).

Table 5: Small model used for NAC-TCN. Recall to Tab. 2 and
Tab. 1.

Model Causal Affwild2 EmoReact

CCC AOC-ROC

NAC-TCN ✓ 0.48 0.86

NAC-TCN ✗ 0.44 0.65

5.4.2 Importance of Casuality. We compare the robustness to causal-

ity of our model versus other similar models in Tab. 5. Our model

weights attention and applies convolutions based on previous 𝑘

timesteps, where an acausal model would weight based on
𝑘
2
on

each side. We find that the causal relation is important in both
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datasets, but is more dramatic in the EmoReact dataset. This sug-

gests that emotions are better learned when future information is

unknown. This phenomenon of better learning with less informa-

tion can be attributed to two potential reasons. Firstly, emotions

inherently involve a causal process, wherein per-frame annota-

tions occur continuously, thereby influencing annotators’ decisions

based on prior frames rather than knowledge of future frames. This

can lead to different understandings depending on what context

is used. Secondly, the disparity between the datasets stems from

the variation in label format. Affwild2 employs per-frame labels,

allowing for non-causal predictions of adjacent frames, whereas

EmoReact utilizes end-of-video labels, thereby elevating the sig-

nificance of causality (the last frame culminating in information

from previous frames rather than ℎ/2 prior frames). We find that

prior literature commonly uses causal relationships over acausal

with better results, making it an interesting point of discussion for

future work.

6 DISCUSSION
6.1 Limitations
Although ourmethod outperformed onmany datasets, performance

on AFEW-VA is notably similar to other temporal models. Given

AFEW-VA is a smaller dataset, this may indicate that NAC-TCN

outperforms other models on larger datasets with more oracle

access. Multi-model & pretraining approaches that could perform

better were not studied due to hardware limitations and simplicity

in results. Our model also holds many of the same flaws of modern

TCN based methods, such as higher memory during evaluation

(needing the whole sequence instead of hidden state) and poor

transfer learning with different 𝑘 or 𝑑 values.

6.2 Contribution
In this paper, we presented an alternative to the Temporal Convolu-

tional Network that allows for attentionwhile decreasing parameters
and number of MAC operations. Experimental evaluation revealed

improvements over classical methods such as GRUs, LSTMs, and

Attention-based methods at a lower computational cost. Our method

outperforms common temporal methods, improves on the benefits

of the TCN, and performs similarly at an efficiency benefit while

maintaining the same TCN controls over memory usage.
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